Code: IT3T3
II B.Tech - I Semester-Regular/Supplementary Examinations November 2017

PROBABILITY AND STATISTICS (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) What are the axioms of probability?
b) If a random variable has the probability density $\mathrm{f}(\mathrm{x})$ as

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
2 e^{-2 x}, \text { for } x>0 \\
0, \text { for } x \leq 0
\end{array} \quad \text { then find } \mathrm{p}(x \geq 0.5) .\right.
$$

c) State Baye's theorem.
d) A die is tossed thrice. A success is getting 1 or 6 on a toss. Find the mean and variance of the number of successes.
e) If a random variable has a Poisson distribution such that $p(1)=p(2)$, find the mean of the distribution.
f) Define population and sample with examples.
g) A random sample of size 100 has a standard deviation of 5. What can you say about the maximum error with 95% confidence.
h) Define Null \& Alternative Hypothesis.
i) Write the student's t-test for difference of means.
j) For an F-distribution find
i) $F_{0.95}(19,24)$
ii) $F_{0.99}(28,12)$
k) Construct a one way classification of analysis of variance table.
PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Box I contains 1 white, 2 red, 3 green balls, Box II contains 2 white, 3 red, 1 green balls, Box III contains 3 white, 1 red, 2 green balls. Two balls are drawn from a box chosen at random. These are found to be one white and one red.
Determine the probability that the balls so drawn come from box II.
b) Let X denote the minimum of the two numbers that appear when a pair of fair dice is thrown once. Determine the
i) Discrete probability distribution
ii) Expectation
iii) variance.
3. a) Fit a Poisson distribution for the following data and calculate the expected frequencies.

x	0	1	2	3	4
$\mathrm{f}(\mathrm{x})$	109	65	22	3	1

b) If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs , how many students have masses
i) Greater than 72 kg
ii) Less than or equal to 64 kg iii) Between 65 and 71 kg inclusive. 8 M
4. a) A normal population has a mean of 0.1 and standard deviation of 2.1. Find the sample size, if maximum error is 1.1372 with 95% confidence. 8 M
b) The mean and standard deviation of a population are 11,795 and 14,054 respectively. What one can assert that 95% confidence about the maximum error if $\bar{X}=11,795$ and $\mathrm{n}=50$. And also construct 95% confidence interval for the true mean.
5. a) A die was thrown 9000 times and of these 3220 yielded a 3 or 4 . In this consistent with the hypothesis that the die was unbiased.
b) Two horses A and B were tested according to the time (in seconds) to run a particular track with the following results

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	-

6. a) A sample analysis of examination results of 500 students was made. It was found that 200 students had failed, 170 had secured a third class, 90 were placed in second class and 20 got a first class. Do these figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for the various categories respectively.
b) The following figures relate to production in kg of three varieties $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of wheat shown in 12 plots.

A	14	16	18	-	-
B	14	13	15	22	-
C	18	16	16	19	20

Test whether the production of wheat of three varieties are equal.

